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Abstract
We consider the interaction of the acoustic phonons localized at the free surface
(surface phonons) in semi-infinite metallic superlattices with electrons and
the resulting surface phonon attenuation rates. We assume a semi-infinite
Kronig–Penney model for the electrons, and the acoustic surface phonons in
the superlattices are described through the continuum elasticity theory. The
deformation-potential coupling is used to calculate the attenuation rates of
the surface phonons in the superlattice. The results are compared with the
experimental damping rates of the localized vibrational modes at the surface of
Al/Ag superlattices.

1. Introduction

The existence of acoustic waves localized at solid surfaces has been well known since the
earlier study by Lord Rayleigh [1]. Recently, a considerable number of studies have been
made on the surface acoustic waves in multilayered elastic systems, or superlattices [2–8].
These surface vibrations may appear within the extra gaps that exist between the folded bulk
bands [9, 10]. They depend on the kind of layer near the surface [5]; they have been predicted
to exist when the surface layer has smaller acoustic impedance [2, 6, 11, 12].

Surface vibrations have been observed experimentally in both semiconducting and metallic
superlattices: first by Grahn et al [11] in Si/Ge, then by Chen et al [12] in Al/Ag and by Perrin
et al [13] in Cu/W superlattices. Specifically, with the picosecond ultrasonics based on a
pump–probe optical technique, Chen et al [12] observed the longitudinal lattice vibrations
that remain near to the free surface for longer than 200 ps. This has been seen with an
aluminium surface layer but no such persistent oscillation has been observed with a silver
surface layer. Here we may point out that the acoustic impedance ZAl of aluminium for
the longitudinal mode is smaller than the corresponding acoustic impedance ZAg of silver
(ZAl = 1.73 × 106 g cm−2 s−1 < ZAg = 4.2 × 106 g cm−2 s−1).

The frequencies of the observed surface vibrations are in good agreement with the values
predicted in the scope of the elasticity theory [12], but their damping is not so simple. The
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measured attenuation rate of the surface vibrations at the mini-Brillouin zone boundary varies
linearly with frequency, in the range 100–300 GHz for various bilayer thicknesses. This
linear variation of the attenuation with frequency may be a signature of an electron–phonon
interaction as in the Pippard theory in bulk metals [14]. However, the agreement between
the measured attenuation rate and the expected values from Pippard theory is far from being
perfect; the measured attenuation is larger than the values expected for bulk aluminium and
bulk silver with ratios of three and 25, respectively. Since the attenuation rate of bulk phonons
in Al is about one order of magnitude larger than the attenuation rate in Ag, the superlattice
samples containing thicker Al layers may be thought to exhibit a larger damping. This has
not, however, been observed in the experiments by Chen et al with different ratios of the Al to
Ag thicknesses. Accordingly, they have attributed the observed attenuation to interaction of
nonelectronic origin [12].

The purpose of the present work is to study quantitatively the effects of the folded band
structures on the attenuation of surface phonons in metallic superlattices in order to compare
to the attenuation for phonons in bulk metals. In a previous paper [15], we have studied
the correction to the Pippard theory of the attenuation of bulk longitudinal acoustic phonons
in a perfect periodic superlattice; we have predicted a remarkable feature, i.e. the resonant
absorption of the phonons by the electrons due to the Brillouin-zone folding of the electrons.
This effect never happens in a homogeneous elastic space.

Theoretically the surface phonons localized at the truncated surface of a semi-infinite
superlattice are obtained by solving the equations of motion for the lattice displacement under
the stress-free boundary condition at the surface and their frequencies are found inside bandgaps
of the corresponding perfect, periodic superlattice. For the electrons we assume a semi-infinite
Kronig–Penney model. The deformation potential coupling is used for the electron–acoustic
phonon interaction as assumed in [15].

In section 2 we summarize the formulation of surface phonons in semi-infinite superlattices
with a free surface and give explicit expressions for the acoustic displacement fields associated
with the surface modes. The electron fields in the semi-infinite Kronig–Penney model are given
in section 3 and the electron–phonon interaction is formulated in section 4. The expressions
for the resulting scattering rates of the surface phonons and the corresponding numerical
calculations for Al/Ag superlattices are developed respectively in sections 5 and 6. Discussion
and concluding remarks are given in section 7.

2. Surface phonons in a semi-infinite superlattice with a free surface

The periodic superlattice considered here consists of alternating A and B layers of elastically
isotropic materials with layer thicknesses dA and dB, densities ρA and ρB and sound velocities
vA and vB, respectively. The unit period, or bilayer thickness, is D = dA + dB. The layer
interfaces of the superlattice are taken to be parallel to the x‖ = (x, y) plane and the growth
direction is parallel to the z direction. We study the surface vibrations (surface phonons)
whose displacement amplitudes decay in the z direction perpendicular to the layer interfaces.
As observed in the experiments by Chen et al [12], here we assume that these surface phonons
do not propagate in the direction along the layer interfaces, i.e., k‖ = 0, where k‖ is the
two-dimensional wavevector in the x‖ plane. For k‖ = 0, the three vibrational modes are
decoupled from each other and we consider a single mode. The surface wave solutions are
obtained by solving the equations of motion for the lattice displacement under the stress-free
boundary condition at the surface. The continuity of the lattice displacement and stress at
the interface between any two layers leads to a 2 × 2 transfer matrix T [4, 6, 12, 15] as
defined below: the general solution for the longitudinal lattice displacement is written in the
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form w(z) = (0, 0,W (z)) and the time-dependent lattice displacement in the direction z is
u(z, t) = W (z) exp (−iωt), withω an angular frequency. Within the theory of elasticity and in
the above conditions, the lattice displacement u is related to the zz component σ of the elastic
stress tensor by [15]

σ(z, t) = ρv2∂u/∂z, (1)

where ∂u/∂z is the strain. The mass density ρ (the sound velocity v) takes either the value
ρA(vA) or ρB(vB) depending on the layer considered. The lattice displacement u(z, t) and the
stress σ satisfy the equation of motion

ρ
∂2u(z, t)

∂ t2
= ∂σ(z, t)

∂z
. (2)

In the superlattices with bilayer thickness larger than about 100 Å, the use of the continuum
model with bulk values for the sound velocities and mass densities uniform in each layer should
be valid.

Previously, we have used the transfer-matrix method to study the propagating bulk phonons
and their attenuation in metallic superlattices [15]. In that work it was shown that the matrix
elements of the unimodular matrix T satisfying det T = 1 are functions of kA, dA, kB, dB,
ZA and ZB, where kI = ω/vI (I = A, B) is the wavenumber in each constituent layer and
Z I = ρIvI is the acoustic impedance [2–6, 11, 12, 16]. We recall here the matrix elements of T :

T11 = cos(kAdA) cos(kBdB)− ZA

ZB
sin(kAdA) sin(kBdB), (3)

T12 = Z−1
A sin(kAdA) cos(kBdB) + Z−1

B cos(kAdA) sin(kBdB), (4)

T21 = −ZA sin(kAdA) cos(kBdB)− ZB cos(kAdA) sin(kBdB), (5)

T22 = cos(kAdA) cos(kBdB)− ZB

ZA
sin(kAdA) sin(kBdB). (6)

In a semi-infinite superlattice with a free surface, the perfect periodicity of the system is
lost and the Bloch theorem no longer applies. A boundary condition is now introduced: the
stress must vanish at the free surface. This boundary condition at the surface leads to the
condition T21 = 0 for the transfer matrix and the possible existence of acoustic modes that are
localized near the surface of the semi-infinite superlattice. The theory of such surface modes
has so far been extensively discussed [2, 4–6]. The above condition together with the equation
det(T ) = 1 leads to the dispersion relation of these non-propagating modes with k‖ = 0 as
cos(kz D) = tr(T )/2 = (T11 + T22)/2 � 1 [6, 11, 12], where exp(ikz D) is an eigenvalue of
the transfer matrix T . The superlattice wavenumber kz governing the wave motion in the z
direction is complex and the surface phonon frequencies ω = ω� (� = 1, 2, . . .) are found
inside the bandgaps of a perfect, periodic superlattice [15].

The ratio of the lattice displacements at the two adjacent periods of the superlattice is T11

if the equation T12 = 0 is satisfied [6] and the corresponding expression of T11 is deduced from
equations (3) and (4). Since surface modes must decay exponentially as one travels away from
the surface, T11 must satisfy the condition |(T�)11| ≡ |[T (ω�)]11| < 1 [6]. Therefore among
the above possible frequencies only those satisfying

|(T�)11| =
∣∣∣∣
cos

(
ω�dA
vA

)
cos

(
ω�dB
vB

)
∣∣∣∣ < 1 (7)

correspond to the frequencies of the vibrational modes localized near the surface [6, 11, 12].
Such eigenfrequencies have been obtained by Chen et al for an Al/Ag superlattice (see figure 1)
with dB/dA = 0.8, D = dA + dB = 218 Å and an Al surface layer A = Al [12]. The decay
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Figure 1. The eigenfrequencies of the surface modes in the semi-infinite Al/Ag superlattice with
an Al (A) layer at the surface are represented by the dots at kz D/π = 0 and 1. The dispersion
relations of longitudinal phonons propagating normal to the layer interfaces of the superlattice are
also shown (solid curves) with dA = dAl = 121 Å and dB = dAg = 97 Å (D = dA + dB = 218 Å).
The lattice displacement equation (9) in the superlattice at the lower edge (solid curve) and the
upper edge (dashed curve) of the lowest frequency gap is shown in the inset with the open square
and circle, respectively.

profiles of the lattice displacements for the lowest two surface mode frequencies are shown
in figure 2. The surface acoustic modes have also been studied by several groups either for
transverse modes [2], or sagittal modes [4].

From the above considerations, the quantized surface phonon displacement vector u for
k‖ = 0 in the semi-infinite superlattices can be written as

u(x) =
∑

J

(
h̄

2ωJ S

)1/2

(aJ + a†
−J )wJ (z), (8)

where x = (x‖, z), J = � is the index specifying the eigenfrequency ω� for the surface
phonons, S is the normalization area, aJ and its Hermitian conjugate a†

J are the annihilation and
creation operators of a surface phonon satisfying [aJ , a†

J ′] = δJ,J ′ and wJ (z) = (0, 0,WJ (z))
for the mode considered in the present work. Explicitly, the lattice displacement WJ (z) is
written as

WJ (z) =
∑

n

(ξJ )
n{	(z − nD)	(nD + dA − z)ρ−1/2

A U (n+1)
A,J (z)

+ 	(z − nD − dA)	[(n + 1)D − z]ρ−1/2
B U (n+1)

B,J (z)}, (9)

U (n+1)
A,J (z) = Ã1,J cos[kA(z − nD)] + Ã2,J sin[kA(z − nD)], (10)

U (n+1)
B,J (z) = B̃1,J cos[kB(z − nD − dA)] + B̃2,J sin[kB(z − nD − dA)], (11)

where 	(z) is the Heaviside unit-step function (	(z) = 1 for z � 0 and 	(z) = 0 for
z < 0) and ξJ = (T�)11 for the surface phonons. For the semi-infinite superlattice occupying
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Figure 2. Lattice displacement WJ (z)(J = �) versus distance z from the surface of the localized
surface vibrations at the lowest two eigenfrequencies ν� = ν1 (solid curve) and ν� = ν2 (dotted
curve) shown in figure 1.

z > 0 with the free surface located at z = 0 the summation over n extends from n = 0 to
infinity where n specifies the position of the unit period considered. The coefficients Ãm,J

and B̃m,J (m = 1, 2) in equations (10) and (11) are determined from the boundary conditions,
i.e., the continuities of the lattice displacement WJ and the associated stress at layer interfaces,
and also the normalization condition

∫ ∞
0 ρ|WJ (z)|2 dz = 1, where ρ takes either the value ρA

or ρB depending on the position z.

3. Electron field in a semi-infinite Kronig–Penney model

The intrinsic Fermi energies of the bulk metals constituting a periodic superlattice (e.g., Al
and Ag to be studied) are different, in general. Therefore, at the metal–metal contacts a charge
transfer should occur through each interface between two adjacent layers to achieve a uniform
Fermi energy in the thermal equilibrium state. Also the charge neutrality should be satisfied
locally, otherwise an electric field is set up which induces an electric current inside the system.
As a result the potential for electrons V (r) = V (z) (=VI and I is either A or B depending on
the position z in the system) is induced. We assume here that the transition between the values
VA and VB of the potential occurs in a very narrow region at the interfaces. Therefore, in this
abrupt interface approximation, we may assume a semi-infinite Kronig–Penney model [17]
for the motion in the z direction perpendicular to the layer interfaces in the superlattice with
a free surface at z = 0. Moreover, we assume a uniform mass in the layering structure with
mA = mB = m, the free electron mass.

In contrast to the case of a perfect, periodic system, the momentum h̄ pz of an electron
is not a good quantum number in the semi-infinite system. A significant effect induced by
the introduction of the surface is the existence of surface localized states of electrons. This
is similar to the case for phonons and the surface states appear inside the energy gaps of the
original spectrum of electrons separated from the band edge states of the perfect, periodic
system [18–20]. Along the layer interfaces the wavefunction should be described by a plane
wave exp(ip‖ · x‖) with p‖ the two-dimensional wavevector in the x‖-plane. Thus the total
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wavefunction ψ(r) is ψ(r) = exp(ip‖ · x‖)φλ(z) and the wavefunction φλ(z) describing the
electronic motion in the z direction satisfies the equation[

− h̄2

2m

d2

dz2
+ V (z)

]
φλ(z) = Eλφλ(z), (12)

with the boundary conditions, i.e., the continuity ofφλ(z) and of the component of its derivative
normal to the interface ∂φλ(z)/∂z. The quantum numberλ in the infinite Kronig–Penney model
is expressed in terms of the Bloch wavenumber pz and the band index i , i.e., λ = (pz, i), but
in the semi-infinite Kronig–Penney model we express λ by a single index s, i.e., λ = s,
which takes either discrete or continuous numbers corresponding to the surface and extended
electronic states, respectively. Thus we write � = (p‖, λ) = (p‖, s) and the total energy of
an electron is E� = Ep‖ + Eλ = Ep‖ + Es . The continuous energy spectrum of the extended
electrons in the semi-infinite superlattice is essentially the same as the one in the allowed energy
band of the perfect, periodic superlattice [15]. This is because the energies of electrons of
both the infinite (perfect, periodic) and semi-infinite periodic systems are determined from the
eigenvalues of the same transfer matrix which connects the wavefunctions and their derivatives
of adjacent periods and are insensitive to the boundary conditions [21, 22]. The energies giving
the eigenvalues of unit modulus are inside the allowed band corresponding to real electron
momentum pz for the perfect, periodic Kronig–Penney model [15]. We will discuss this point
in more detail in section 5.

We define here V0 as the potential height of the barrier layer B for electrons relative to
the well layer A for electrons, which results from the difference of the Fermi energies EA

f and
EB

f of bulk A and B materials, i.e., V0 = EA
f − EB

f > 0 (see figure 3). The envelope function
φλ = φs(z) for z > 0 takes a form similar to the expression of WJ (z) for the phonons with a
quantum number s instead of J [23],

φs(z) =
∑
n�0

{	(z − nD)	(nD + dA − z)φ̃(n+1)
A,s (z)

+ 	(z − nD − dA)	[(n + 1)D − z]φ̃(n+1)
B,s (z)}, (13)

where φ̃(n+1)
A,s (z) and φ̃(n+1)

B,s (z) take similar forms as U (n+1)
A,J (z) and U (n+1)

B,J (z) for phonons given
in equations (10) and (11). For the (n + 1)th period and for Es > V0,

φ̃
(n+1)
A,s (z) = A(n+1)

1,s cos[qA(z − nD)] + A(n+1)
2,s sin[qA(z − nD)], (14)

φ̃
(n+1)
B,s (z) = B(n+1)

1,s cos[qB(z − nD − dA)] + B(n+1)
2,s sin[qB(z − nD − dA)]. (15)

The wavenumbers qA and qB are defined through the energy of electrons Es = h̄2q2
A/2m =

h̄2q2
B/2m + V0. For Es < V0 the trigonometric functions cos[qB(z − nD − dA)] and

sin[qB(z − nD − dA)] in equation (15) for the B layer should be replaced with the hyperbolic
functions cosh[qB(z − nD − dA)] and sinh[qB(z − nD − dA)], respectively, with qB defined
by Es = −h̄2q2

B/2m + V0. The coefficients A(n+1)
j,s and B(n+1)

j,s ( j = 1, 2) are determined
successively by applying the transfer matrix t defined below, once the wavefunction φs(z) in
the vacuum region (z < 0) is specified.

These expressions for the electron wavefunctions for z > 0 should be compared with
those in a perfect, periodic superlattice, which are written as (with λ = (pz, i)) [15]

φλ(z) =
∑

n

einpz D{	(z − nD)	(nD + dA − z)φ(n+1)
A,λ (z)

+ 	(z − nD − dA)	[(n + 1)D − z]φ(n+1)
B,λ (z)}, (16)

where

φ
(n+1)
A,λ (z) = A1,λ cos[qA(z − nD)] + A2,λ sin[qA(z − nD)], (17)
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Figure 3. The energy diagrams of electrons in the semi-infinite Al/Ag superlattice
(A = Al,B = Ag). Left-hand side: schematic energy diagram of the conduction band for electrons;
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Right-hand side: dispersion relation (energy versus pz) of electrons in the infinite Kronig–Penney
model with dA = dAl = 121 Å and dB = dAg = 97 Å (D = dA + dB = 218 Å). The details of
three energy regions near the bottom Eλ = 0, Eλ = V0 and the top Eλ = E f are shown. Surface
states in the semi-infinite superlattice are indicated by dots.

φ
(n+1)
B,λ (z) = B1,λ cos[qB(z − nD − dA)] + B2,λ sin[qB(z − nD − dA)], (18)

with the coefficients A j,λ and B j,λ ( j = 1, 2) determined from both the boundary conditions
at the layer interfaces and the normalization conditions. The expressions for the electron
wavefunctions in a perfect, periodic superlattice will be used in section 4.

In contrast, the wavefunction in the vacuum region z < 0 is simply written as

φs(z) = C̃ exp (q0z), (19)

where q0 is defined by Es = −h̄2q2
0/2m + Ṽ ; Ṽ is the vacuum level measured from

the bottom of the potential well of the A layer (see figure 3, below) and C̃ is a constant
determined from the continuity of the wavefunction at the free surface and the normalization
condition

∫ L
−∞ |φs(z)|2 dz � ∫ L

0 |φs(z)|2 dz = 1 for an extended electron eigenstate and∫ ∞
−∞ |φs(z)|2 dz � ∫ ∞

0 |φs(z)|2 dz = 1 for a surface electron state.
Now we derive the equation determining the energies of the electrons. For this purpose

we introduce a 2 × 2 transfer matrix t , whose elements are given by (with α = qAdA and
β = qBdB) [15]

t11 = cosα cosβ − qA

qB
sin α sin β, (20)

t12 = q−1
A sin α cosβ + q−1

B cosα sin β, (21)

t21 = −qA sin α cosβ − qB cosα sin β, (22)
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t22 = cosα cosβ − qB

qA
sin α sin β (23)

for Es > V0 and

t11 = cosα cosh β − qA

qB
sin α sinh β, (24)

t12 = q−1
A sin α cosh β + q−1

B cosα sinh β, (25)

t21 = −qA sin α cosh β + qB cosα sinh β, (26)

t22 = cosα cosh β +
qB

qA
sin α sinh β (27)

for Es < V0. With this transfer matrix t we write the electron wavefunction in the A layer and
its derivative at the interface of the (n + 1)th period as

Φ(n+1)
A,s (nD) ≡

(
φ̃
(n+1)
A,s (nD)

[φ̃(n+1)
A,s (nD)]′

)
= tnΦvac,s(0), (28)

where

Φvac,s(z) ≡ C̃

(
exp(q0z)

q0 exp(q0z)

)
. (29)

If we define the wavefunction Φ(n+1)
B,s in the B layer similarly to equation (28), its elements are

determined from the continuity at the layer interfaces

Φ(n+1)
B,s (nD + dA) = Φ(n+1)

A,s (nD + dA). (30)

The product tn of the transfer matrix in equation (28) is calculated as

tn =
(

t11Sn − Sn−1 t12Sn

t21Sn t22Sn − Sn−1

)
, (31)

where

Sn = εn
2 − εn

1

ε2 − ε1
(32)

and ε1 and ε2 (=(ε1)
−1) are the eigenvalues of the unimodular transfer matrix t . For an

electron within an energy band, (ε1, ε2) = (eiθ , e−iθ ) with θ a real number defined by
cos θ = (t11 + t22)/2 and

Sn = sin nθ

sin θ
. (33)

For a surface state the electron wavefunction should vanish for z → ∞ or for n → ∞. This
condition together with equations (20)–(32) leads to

q0 = ζ − t11

t12
= t21

ζ − t22
, (34)

where ζ(|ζ | < 1) is the eigenvalue (either ε1 or ε2) of the transfer matrix t with smaller
modulus. The condition |ζ | < 1 means that the surface states are found only inside the energy
gap of the infinite Kronig–Penney system.

Thus the quantized electron fields in the semi-infinite superlattice can be written as

�(x) =
∑
�

b�φs(z)eip‖·x‖/
√

S, (35)

where b� and its Hermitian conjugate b†
�are the annihilation and creation operators of electrons

satisfying the anti-commutation relations {b�, b†
�′ } = δ�,�′ and {b�, b�′ } = 0.
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4. Electron–phonon interaction in superlattices

The deformation-potential coupling is assumed to be the mechanism of the electron–phonon
interaction in metallic superlattices. In the Kronig–Penney model the calculated electron
concentrations in the A and B layers coincide with those of bulk metals. This means that local
charge neutrality holds in the layered structure and electrons are sensitive to the local lattice
vibrations. Therefore the deformation-potential constants CA and CB of the bulk A and B
metals are used for the electron–phonon coupling. The interaction of non-propagating surface
phonons (with k‖ = 0) with the electrons is described by the Hamiltonian

HI =
∑
�′,�,J

(
h̄

2ωJ S

)1/2

b†
�′b�(aJ + a†

−J ) δp′‖,p‖ Iλ′λJ , (36)

where the set of quantum numbers � = (p‖, λ) specifies the complete electronic state and
J = �.

Before considering the interaction of surface phonons with both the extended and surface
states of electrons in semi-infinite superlattices, we first consider the interaction of surface
phonons with bulk electrons in the perfect, periodic superlattice, thus neglecting the effect
of the existence of a free surface for the electrons. This kind of approximation is often
used in semi-infinite superlattices [11, 12, 22] because, as said above, the boundary conditions
essentially affect the electron wavefunctions in a very small surface region provided that the size
L of the system is large. Moreover, in this approach analytical calculations can be developed
to some extent; hence, it is helpful in understanding the underlying physics associated with the
surface phonon attenuation. In contrast, the full calculation of the surface phonon attenuation
due to the interaction with the extended and surface electrons in the semi-infinite system is
rather numerical in nature as we will see below.

For the interaction with the electrons in the perfect superlattices, the expression for Iλ′λJ

takes the form

Iλ′λJ = G(p′
z, pz, J ) Fλ′λJ , (37)

where

Fλ′λJ = CA

ρ
1/2
A

∫ dA

0
dz φ∗

A,λ′(z)
dUA,J (z)

dz
φA,λ(z) +

CB

ρ
1/2
B

∫ dB

0
dz φ∗

B,λ′(z)
dUB,J (z)

dz
φB,λ(z), (38)

with φA,λ(z) = φ
(1)
A,λ(z), φB,λ(z) = φ

(1)
B,λ(z + dA) (see equations (17) and (18)), UA,J (z) =

U (1)
A,J (z) and UB,J (z) = U (1)

B,J (z + dA), is the overlapping integral of the electron and phonon
wavefunctions over a unit period, and

G(p′
z, pz, J ) = G(p′

z, pz, �) = 1

1 − ei(pz−p′
z)D(T�)11

. (39)

Here we remark that for the bulk phonon interaction with the electrons in an assumed perfect
superlattice G(p′

z, pz, J ) becomes a function representing the conservation of superlattice
wavenumbers [15], i.e.,

G(p′
z, pz, J ) = G(p′

z, pz, kz) = N�(p′
z − pz − kz), (40)

where N is the number of periodicity,�(pz) = 1 if pz is a reciprocal superlattice number and
�(pz) = 0 otherwise.

On the other hand, for the interaction with electrons in the semi-infinite superlattices the
expression for Iλ′λJ is
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Iλ′λJ =
∞∑

n=0

{
CA

ρ
1/2
A

∫ nD+dA

nD
dz [φ̃(n+1)

A,λ′ (z)]∗
dŨ (n+1)

A,J (z)

dz
φ̃
(n+1)
A,λ (z)

+
CB

ρ
1/2
B

∫ (n+1)D

nD+dA

dz [φ̃(n+1)
B,λ′ (z)]∗

dŨ (n+1)
B,J (z)

dz
φ̃
(n+1)
B,λ (z)

}
, (41)

with Ũ (n+1)
A(B),J = [(T�)11]nU (n+1)

A(B),J . The integrations of equation (41) cannot be done
analytically but there exists an analytical expression (though lengthy) for Fλ′λJ defined by
equation (38) [15].

5. Attenuation rates of surface phonons

Just like the case for the bulk metals [23, 24] the interaction between electrons and phonons is
assumed to be weak enough for their respective states to be relatively long lived so that the first
order perturbation theory can be used to calculate the scattering rate. Thus, applying the Fermi
golden rule for the transition rate, we can derive the equation governing the time evolution for
the deviation�nJ of phonon occupation number nJ from the thermal equilibrium value:

−�ṅ J

�nJ
= τ−1

J = 2π

ωJ S

∑
�′,�

|Iλ′λJ |2( f� − f�′ )δp′‖,p‖δ(E�′ − E� − h̄ωJ ), (42)

where τJ is the relaxation time of the surface phonon specified by J and f� is the electron
occupation number.

According to our previous remark in section 4, we first consider the attenuation of surface
phonons due to the interaction with the electrons in a perfect, periodic superlattice. The
wavenumber kz of the surface phonons is complex and the conservation of the superlattice
wavenumbers does not hold. In this case equation (39) leads to the form factor which depends
on the transfer of the superlattice wavenumber of electrons to the surface phonon with ω = ω�,

|G(p′
z, pz, �)|2 = 1

1 − 2(T�)11 cos[(p′
z − pz)D] + [(T�)11]2

. (43)

This expression means that the electrons with a wavenumber pz in a continuous range can
interact with surface phonons (see figure 4 below for a numerical example). However,
the energy conservation still has to be satisfied. Here we note that for (T�)11 <

0 (>0)|G(p′
z, pz, �)|2 has peaks at (p′

z − pz)D/π = ±1,±3, . . . (=0,±2, . . .) corresponding
to the wavenumber-conserving emission and absorption of a zone-boundary (zone-centre)
surface phonon by electrons. The attenuation rate now becomes

τ−1
J = L2

(2π)2
m

h̄

∑
i

∑
n

∫ π/D

−π/D
d pz

|Fλ′λJ |2
1 − 2(T�)11 cos[(p′

z − pz)D] + [(T�)11]2

∣∣∣∣dE p′
z,i

′

d p′
z

∣∣∣∣
−1

p′
z=p(n)

,

(44)

with J = �, λ = (pz, i), λ′ = (p′
z, i

′) and E p′
z,i

′ = E pz ,i + h̄ω�. The integration with respect to
pz should be carried out over the region in the mini-Brillouin zone where the real wavenumber
p′

z satisfying the energy conservation E p′
z ,i

′ = E pz,i + h̄ω� may be found. In such cases there
exist, in general, two solutions p′

z = p(1) and p(2) with p(1) = −p(2) for a given pz . Hence,
the sum over n in equation (44) is taken over n = 1 and 2.

Next we study the attenuation due to the interaction with both the extended and surface
states of electrons in a semi-infinite superlattice. For a superlattice with D ∼ 100 Å and in the
approximation that the level broadening of the electron energies is neglected, the transitions
between the electronic states by the emission and/or absorption of a sub-THz surface phonon
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Figure 4. Form factor |G|2 versus wavenumber transfer (pz − p′
z) to the low-frequency surface

phonons at ν1 (the zone-boundary mode, solid curve) and at ν2 (the zone-centre mode, dotted curve)
in the Al/Ag superlattice. The assumed parameters are the same as for figures 1 and 3.

are prohibited for λ = s and λ′ = s′ with Es, Es ′ < V0. Thus, for the attenuation of a surface
phonon with J = l, we may consider the scattering processes where (a) both λ = s and λ′ = s′
in equation (41) correspond to the extended electron states and (b) λ = s corresponds to the
surface state and λ′ = s′ to the extended state, and vice versa. The attenuation rate due to these
processes (a) and (b) is written as

τ−1
J = τ−1

J,(a) + τ−1
J,(b), (45)

where

τ−1
J,(a) = m

h̄

∫
dEs D̃(Es)D̃(Es + h̄ωJ )|Is ′s J |2Es′ =Es +h̄ωJ

, (46)

τ−1
J,(b) = m

h̄

∑
s

{D̃(Es + h̄ωJ )|Is ′s J |2Es′=Es +h̄ωJ
+ D̃(Es − h̄ωJ )|Iss ′ J |2Es′ =Es−h̄ωJ

}, (47)

D̃(E) is the density of states of the extended electrons in the semi-infinite Kronig–Penney
system and the sum over s in equation (47) is taken only over surface states of electrons.

It should be noted here that, for the extended electronic states in the semi-infinite Kronig–
Penney model, we can use the same density of states as the one in the infinite Kronig–Penney
model. This is assured by the general theory of eigenvalues that the energy spectrum is not
significantly affected by the chosen boundary condition, provided that the system size L is
large [21]. More precisely, a fraction of L−1 of energies enter and leave any energy interval
when we change from one boundary condition to the other, and this is negligible in the limit
of large L. Thus the energy spectra are essentially the same for the infinite and semi-infinite
superlattice systems, though the electron wavefunctions are quite different even if the energies
are the same. So, it is important to take account of the modification of the wavefunctions due
to the introduction of a surface. For instance, the local density of states of electrons near the
surface region should be different from those inside the superlattice. These effects have been
considered properly in the calculation of equations (46) and (47).
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Table 1. Frequencies (ν) and decay constants (T11) of the sub-THz localized surface vibrations in
the Al/Ag superlattice with dA = dAl = 121 Å and dB = dAg = 97 Å (D = dA + dB = 218 Å).

� ν� (GHz) (T�)11

1 122 −0.426
2 221 0.894
3 362 −0.548
4 448 0.662

6. Numerical calculations

The attenuation rates of the extended and surface phonons in an Al/Ag superlattice with
dA = dAl = 121 Å and dB = dAg = 97 Å (D = 218 Å) are calculated from the above
equations. These layer thicknesses are the same as those of the superlattice used for the
picosecond ultrasound experiment by Chen et al [12]. We also assume other parameters used
by Chen et al to analyse phonon properties in Al/Ag superlattices: ρA = ρAl = 2.7 g cm−3,
ρB = ρAg = 10.5 g cm−3, vA = vAl = 6.4 × 105 cm s−1 and vB = vAg = 4.0 × 105 cm s−1.
The Fermi energies of electrons in aluminium and silver are 11.63 and 5.48 eV, respectively.
The potential barrier height V0 deduced from the Fermi energies is therefore V0 = 6.15 eV.
From the Fermi energies of aluminium and silver, we also find the deformation-potential
constants CA = CAl = −7.57 eV and CB = CAg = −3.65 eV.

6.1. Frequencies and lattice displacements for surface phonons

The dots in figure 1 show the frequencies of the non-propagating surface modes that exist in
the semi-infinite superlattice with an Al (A) layer at the free surface z = 0. They appear
either at band edges or in forbidden bands between the solid curves representing the dispersion
relation of the longitudinal phonons propagating along the growth direction of the Al/Ag
superlattice. These eigenfrequencies have been previously calculated by Chen et al [12]
and the corresponding decay coefficients (T�)11 are tabulated in table 1 for the lowest four
frequencies. As expected, the magnitude of the decay coefficient |(T�)11| is close to unity at a
frequency near the band edge (ν2, for instance), suggesting the slow decay of the displacement
amplitude.

In figure 2 we show the lattice displacement WJ (z) (J = �) versus the distance away
from the surface for the lowest two eigenfrequencies ν1 and ν2; the phase has been chosen so
that WJ (z) is real. The decay of the displacement amplitude at ν2 is very slow compared to
the displacement amplitude at ν1. It exhibits a bulklike oscillatory behaviour.

Figure 3 shows the dispersion relation of electrons calculated from the semi-infinite
Kronig–Penney model together with a schematic energy profile for the electrons. Because
of the large thickness (dB = dAg = 97 Å) of the potential barrier (silver layer) for electrons,
the band widths are negligibly small at energies below V0, leading to discrete energy levels for
Es < V0. Energy bands of a sizeable width are found only for Es > V0. In the superlattice
considered, no interband transition is allowed for electrons by the absorption or emission of a
sub-THz phonon.

6.2. Attenuation rate of surface phonons

Figure 4 displays the form factor |G|2 versus wavenumber transfer pz − p′
z to a surface phonon

from electrons assumed to belong to a perfect, periodic superlattice (an infinite Kronig–Penney
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Figure 5. The attenuation rates versus frequency for the surface phonons (the lowest zone-boundary
(ZB, circles) and zone-centre (ZC, squares) modes) localized at the truncated surface with an Al
first layer and for various spatial periods (bilayer thicknesses) D = 218, 163, 120, 89.3 and
70.4 Å of the superlattice and a constant ratio (=0.8) of the Ag-to-Al thickness. The results due
to the interaction with the electrons in the semi-infinite (in the perfect, periodic) superlattice are
shown by filled (open) circles and squares. The solid line is the least-squares fit to the experimental
damping rates of the ZB mode (from [12]). The dotted lines show the attenuation rates in the bulk
aluminium and silver calculated from the Pippard formula.

model). For a surface mode which penetrates deep into the superlattice with |(T�)11| � 1 (the
zone-centre surface phonon at ν = ν2), the form factor has large peaks like δ-functions expected
for the interaction of bulk phonons. However, for the interaction of the zone-boundary surface
phonon (at ν = ν1) well localized near the surface of the superlattice (|(T�)11| < 1), small
and broad humps are found, suggesting the relaxation of the wavenumber conservation along
the layer interfaces.

In the calculation of the attenuation rate we have considered, in addition to the superlattice
with D = 218 Å, four kinds of Al/Ag superlattice with bilayer thicknesses D = 163, 120,
89.3 and 70.4 Å, which are used in the experimental measurements of the damping [12]. In
these superlattices the ratio of the Ag-to-Al thickness is 0.8. The attenuation rates plotted in
figure 5 are those obtained for the lowest zone-boundary (ZB, circles) and zone-centre (ZC,
squares) surface phonons.

We see in figure 5 that the calculated attenuation rates roughly exhibit a linear dependence
on frequency as observed experimentally, though there exist some fluctuations arising from
the changes of the electron band structure sensitive to the thickness of the constituent layers.
However, the magnitudes calculated with the electronic states both in the perfect,periodic (open
symbols) and semi-infinite (filled symbols) systems are much smaller than the experiments.
For the ZB mode (circles) the theoretical attenuation rates are about a factor of ten smaller than
the experimental damping rates shown by the solid line exhibiting a least-squares fit to the ZB
mode data (from [12]), though the former are of the same order of magnitude as calculated
from the Pippard theory for bulk phonons [14].

For the ZC mode (squares), the theoretical attenuation rate is larger than that for the ZB
mode. An accurate experimental measurement for the ZC mode was made only at a single
frequency (480 GHz) and the damping of this mode is reported to be about a factor of two higher
than would be expected on the basis of an extrapolation of the low-frequency data for the ZB
mode [12]. But the calculated attenuation is again about a factor of ten smaller than these data.
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Thus, the inclusion of the effects of the surface on the electronic states in the superlattice
does not help to increase the agreement with the experimental results. We note that in this
calculation the dominant contribution to the attenuation rate equation (45) comes from the
processes where both the initial and final electrons are in the extended states, i.e., τ−1

J,(a)
equation (46). We also remark here that similarly to the case for the bulk phonons the
attenuation of surface phonons is predicted to occur predominantly in the Ag layers, though
they have smaller thickness and smaller deformation-potential constant [15].

7. Conclusions

We have extended the Pippard theory of the electron–phonon interaction in a bulk metal
to multilayered structures in order to explain the damping of surface phonons in Al/Ag
superlattices measured by Chen et al [12]. The calculated attenuation rate assuming the
interaction with electrons in both infinite and semi-infinite periodic superlattices roughly
exhibits a linear frequency dependence just as in the experiments. However, the absolute
magnitude is much smaller than the measured damping rates; that is, the results of the Pippard
theory applied to the superlattice do not agree with the experimental data. Thus we conclude
that the extension of the Pippard theory simply taking account of the folded band structures
of both electrons and phonons in the mini-Brillouin zone of a superlattice cannot explain the
large damping of the high-frequency surface phonons in Al/Ag superlattices.

In semiconductor confined structures the existence of the ripple mechanism for the
electron–phonon interaction has been suggested in addition to the deformation-potential
and piezoelectric couplings [25, 26]. This interaction originates from the time modulation
of the electron quantization energies caused by the heterointerface vibrations associated
with acoustic phonons. However, in our formulation of the electron–phonon interaction in
metallic superlattices we have not considered this effect on the phonon attenuation in metallic
superlattices. This is partly because we want to estimate the correction to the Pippard theory
for the phonon attenuation in superlattices due to the deformation-potential coupling. Also it
is doubtful whether this effect is really large for the superlattice with a large bilayer thickness
D � 100 Å.

Another contribution to be studied further would be the effect of broadening of the
electronic energy states due to the scattering of electrons. This effect makes it possible for the
surface and extended states of electrons to absorb or emit surface phonons via interband or
interlevel transitions and hence will contribute to enhancing the attenuation of surface phonons.

To conclude, our results suggest that a more elaborated theory of electron–phonon
interaction or a calculation based on other mechanisms beyond the one developed in the
present work will be needed to resolve the attenuations of surface phonons observed in metallic
superlattices.
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